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The Problem:  The Problem:  

SingleSingle--Chip & SingleChip & Single--Node PerformanceNode Performance

Overall system performance begins at a node.

• Scalability is not enough.   1000 x 0.01  =  10.

• Getting to exascale will be immensely easier if we can 

bump up the typical single core performance from 

1% – 5% of peak to 25 – 50% of peak.

We must overcome:

• Small ratio  off-chip memory bandwidth / peak flops

• Need for strong scaling, doing less per time step on 

each core while still running at 25 – 50% of peak.



Our Approach for Achieving High  Our Approach for Achieving High  

SingleSingle--Chip & SingleChip & Single--Node PerformanceNode Performance

Small ratio  off-chip memory bandwidth / peak flops:

• The only way to address this in general is with a 

sufficiently large on-chip cache.

• Making optimal use of this resource requires, in our 

experience, extreme code restructuring.

• This requires assistance of a precompilation tool.

Need for strong scaling, doing less per time step on each 

core while still running at 25 – 50% of peak:

• Must make full use of vector SIMD units.

• Vectors must be short (cache is small), hence aligned.

• Multiple cores on single chip must cooperatively

update a single subdomain to minimize messaging.



Quantifying the TradeQuantifying the Trade--off between Memory off between Memory 

Bandwidth and OnBandwidth and On--Chip Cache CapacityChip Cache Capacity

Example of our present multifluid PPM code.

(Ignore cost of reading the instructions.)

1) One entire time step update on chip:   

3900/120  flops/byte  =  130  flops/word   (9 MB)

2) Single 1-D pass update on chip:

1300/120  flops/byte  =    43.3  flops/word   (256 KB)

3) PPMinterp for single variable on chip:

34/32  flops/byte  =             4.25  flops/word   (64 KB)

4) RiemannStates on chip:

79/140  flops/byte  =           2.26  flops/word   (64 KB)

5) Fluxes on chip:

162/208  flops/byte  =         3.12  flops/word   (64 KB)

A modest cache buys a factor of 10 in mem. Bandwidth!!



How does the code look?How does the code look?



What did the translator doWhat did the translator do
Inlining

� Necessary for pipelining

Pipelining

� Controls the explosion of temporaries

Temporary array space reduction

� Fit the whole computation into the L-1/L-2 cache

Prefetching

� Overlap computation w/ communication to a 

node’s own main memory

Fusing   (Fusing IFs, not loops)

� Move pipelined code blocks to reduce branching 

Unrolling

� Reduce branching.

Relies on directives and annotations



Fully Pipelined Processing of Grid BriquettesFully Pipelined Processing of Grid Briquettes

Each uninterruptible unit of work for a CPU core is:

1000 continue

� Prefetch the next group of 16 grid briquettes.

� Unpack the previously fetched group of briquettes.

� Construct 32-word vectors from briquette records.

� Perform 32××××1447 vector SIMD flops, with all 

vector operands aligned.

� Result is set of 4 updated grid briquettes.

� Pack new result vectors back into 4 grid briquette 

records, possibly transposing the contents.

� Write the 4 updated grid briquette records back to 

main memory.

� If more briquettes in strip, then go to 1000.

Return to begin next strip of briquettes.











Benefits of Pipelined Operation:Benefits of Pipelined Operation:

• All accesses to main memory are in “atomic” units of 

grid briquette records, which are each 480 bytes.

• 16 briquette records trickle into cache while we 

update previous 4 briquettes in the sequence.

• All operands are 4 quadwords and all are aligned.

• Derivatives are evaluated in direction of the 1-D pass, 

which enables operand alignment to be preserved.

• Small number of transverse derivatives evaluated 

using specially constructed, aligned operands.

• Only the minimum amount of data required to 

update 4 grid briquettes resides in cache.

• Huge amount of on-chip data reuse, 

4.82 flops/byte/core   or   19.3 flops/word/core.

• Uses less than 10% of available memory bandwidth.



Summary / The tool on completion does :Summary / The tool on completion does :

Inline all subroutines a single briquette update needs

Pipeline over briquettes to avoid redundant unpacking 

of data records and redundant computation

Fuse code blocks belonging to same pipeline stages

Unroll outer loops over longitudinal dimension (strip 

direction)

Prefetch

Perform liveness analysis and further reindex temporaries

Retain minimal set of transverse grid planes needed 

for a single briquette update

Optionally unroll inner loops over transverse direction to 

produce sequence of quadword SIMD operation



We will NOT handle everything for all codes.
Programmers will have to annotate their codes, or at least the 

sections to be translated.

Programmers will be responsible for the correctness of the 

directives they use.  Incorrect usage is a program bug, not the 

translator’s. 

Programmers will control decomposition of the algorithm into a 

sequence of calculations each of which will be pipelined.

Translator will assume that all devices have roughly the same ratio 

of memory bandwidth to peak performance (which is true 

today).

If entire algorithm is pipelined into a single loop, may need to spill 

too many “vector registers” and read them back later.

If algorithm broken up into too many separate pipelined loops, 

on-chip data reuse reduced.

Programmer experiments, using code translator.



Restrictions:Restrictions:

Simplifies analysis and tool building

Examples:

• Simplify parsing

• Integer lengths in type statements must be just 

constants => real*8 allowed, but not real*(8) or 

real*(4+4)

• Simplify analysis

• Unnamed common blocks not supported

• Common block statements must appear all its 

members have been declared

• Loops bounds must be constants in the 

transformation region

• Scalar statements not allowed between the pipeline 

stages

Doesn’t impair programmability



1)

2)

Input: 

A program updating a sequence of grid briquettes

The translator pipelines it



OpenMP, or any 
equivalent 
threading model, 
is used to have 
multiple CPU 
cores 
cooperatively 
update a single 
grid brick.  

Each core 
updates strips of 
grid briquettes 
(sugar cubes).

There is now a barrier synchronization among the core 
threads at the end of each grid brick update.

8 cores (different colors) simultaneously 

update 8 strips of sugar cubes.

3)



8 cores simultaneously update each of 

the 8 bricks in succession.

4)

At the beginning 
of each grid brick 
update, we 
receive 1 
message in each 
of the 3 grid 
directions.
At the end of 
each grid brick 
update, we send 
1 message in 
each of the 3 
grid directions.

This messaging strategy allows all the worker threads to just 
keep right on working without ever stopping.



c     Output arrays from Fluxes:

c

dimension        dvoll(nssq,1-nghostcells:nx+nghostcells)

dimension       dmassl(nssq,1-nghostcells:nx+nghostcells)

c

c     Output arrays from CellUpdate:

c

dimension       rhonu(nssq,1-nghostcells:nx+nghostcells)

c

c     Scratch arrays:

c

dimension     thing01(nssq,1-nghostcells:nx+nghostcells)

dimension     thing02(nssq,1-nghostcells:nx+nghostcells)

dimension     thing03(nssq,1-nghostcells:nx+nghostcells)

c

c     Scratch arraylets:

c

dimension     thngy01(nssq), thngy02(nssq), thngy03(nssq)

dimension     thngy04(nssq), thngy05(nssq), thngy06(nssq)

Inside the principal routine, scratch storage on the stack 

is laid out as above in the Fortran-W version.  This 
version is intended to be easy to write and maintain.



cPPM$ ELIMINATE REDUNDANT ITERATIONS

do icget = icube-nghostcubes,icube+nghostcubes

c

c      write (6,*) 'icget =',icget

cPPM$ PREFETCH BEGIN

cPPM$ DOUBLEBUFFER D

mycube = 1 + (icget-1)*incx - incy - incz

do kcube = 1,nsugarcubes

mycube = mycube + incz

micube = mycube

do jcube = 1,nsugarcubes

micube = micube + incy

do j = 1,nsugarcubed

d(j,jcube,kcube) = dd(j,micube)

enddo

enddo

enddo

c

do i = 1,nsugar*2

xlcube(i) = xxl(i,icget)

enddo

cPPM$ PREFETCH END

In this principal 

Fortran-W routine, 

we do a loop on  

icube,  and on each 

iteration we fetch a 

briquette record 

and the necessary 

ghost briquettes 

needed to enable 

the updating of the 

variables in this 

grid briquette.  This 

data is unpacked 

and rearranged 

once we have it in 

the on-chip cache 

memory.



call ppmintrf0vec (rho,

&              unsmth,

&              rhol,rhor,drho,rho6,

&              dal,absdal,dasppm,damnot,alsmth,alunsm,

&              thngy01,thngy02,thngy03,thngy04,thngy05,thngy06,

&              sixth,crterr,ferrfc,small,

&             adds,amults,recips,cvmgms,sqrts,rsqrts,exps,

&             ifdebug,time,myrank,mythread,mbrick,

&             iold,icube,jbq,kbq,ipass,

&             MyBrickX,MyBrickY,MyBrickZ,

&             NXBricks,NYBricks,NZBricks)

Once we have unpacked the grid briquette 

records and rearranged their contents in cache-

resident arrays on the stack, we call a routine that 

takes this data and operates upon it using a very 

simple Fortran expression, which is the 

advantage of Fortran-W.   We pass a temporary 

workspace on the stack to this routine in the form 

of the arrays  thngy0x.



subroutine ppmintrf0vec (a,

&              unsmth,

&              al,ar,da,a6,

&              dal,absdal,dasppm,damnot,alsmth,alunsm,

&              thngy1,thngy2,s,almon,armon,unsmooth,

&              sixth,crterr,ferrfc,small,

&             adds,amults,recips,cvmgms,sqrts,rsqrts,exps,

&             ifdebug,time,myrank,mythread,mbrick,

&             iold,icube,jbq,kbq,ipass,

&             MyBrickX,MyBrickY,MyBrickZ,

&             NXBricks,NYBricks,NZBricks)

From the perspective of the routine  ppmintrf0vec,  

written in Fortran-W,  our single grid briquette, 

with its ghost cells, constitutes the entire grid of 

the problem.  We exploit the fact that in a parallel 

code, the updating of a subset of the problem 

domain follows the same algorithm and code 

expression as the update of the entire domain.  

This is a sort of self-similarity.



parameter (nsugar=nnsugar)

parameter (nsugarcubes=nnsugarcubes)

parameter (nbdy=nnbdy)

parameter (nbdy1=nbdy+nsugar-1)

parameter (nghostcubes=(nbdy1/nsugar))

parameter (nghostcells=nghostcubes*nsugar)

parameter (n=nsugar)

parameter (nx=nsugar)

parameter (ny=nsugar)

parameter (nz=nsugar)

parameter (nyy=ny*nsugarcubes)

parameter (nzz=nz*nsugarcubes)

parameter (nssq=nyy*nzz)

The permitted formats make use of parameter statements 
like these.  The programmer can choose whatever parameter 
names are desired, and set them, as in this example, using 
the C preprocessor, but they must evaluate to integer 
constants.  When handed to the PPM code translator, the 
grid briquettes must be cubes, here called sugar cubes.

Here  nsugar,  the 
number of grid cells on 
each side of each grid 
briquette, has the value  
4.
nbdy is the number of 
ghost cells required on 
each end of a 1-D grid 
strip for a 1-D pass of 
this algorithm.  In this 
case it is also  4, which 
is especially felicitous.



cPPM$  LOWERBOUND   1-nbdy

cPPM$  UPPERBOUND    nx+nbdy

cPPM$  LONGITUDINAL  LOOP

do 7000   i = 4-nbdy,n+nbdy-3

!DEC$ VECTOR ALWAYS

c!DEC$ VECTOR ALIGNED

do jk = 1,nssq

al(jk,i) = alunsm(jk,i)

ar(jk,i) = alunsm(jk,i+1)

almon(jk) = 3. * a(jk,i)  - 2. * ar(jk,i)

armon(jk) = 3. * a(jk,i)  - 2. * al(jk,i)

if (((a(jk,i) - al(jk,i)) * (a(jk,i) - ar(jk,i))) .ge. 0.)  then

al(jk,i) = a(jk,i)

ar(jk,i) = a(jk,i)

almon(jk) = a(jk,i)

armon(jk) = a(jk,i)

endif

if (((ar(jk,i) - al(jk,i)) * (almon(jk) - al(jk,i))) .gt. 0.)

&      al(jk,i) = almon(jk)

if (((ar(jk,i) - al(jk,i)) * (armon(jk) - ar(jk,i))) .lt. 0.)

&      ar(jk,i) = armon(jk)

da(jk,i) = ar(jk,i) - al(jk,i)

a6(jk,i) = 6. * (a(jk,i)  - .5 * (al(jk,i) + ar(jk,i)))

enddo

7000  continue

The programmer 
communicates to 

the translator how 
this loop is to be 

inserted into a fully 

pipelined 

translation by 

means of the 

extents on the 

outer loop over i.   
The outer loop 

must run over the 

dimension 
considered as  X  

in this routine –

the direction of 

this 1-D pass.



!DEC$ VECTOR ALWAYS

c!DEC$ VECTOR ALIGNED

do jk = 1,nssq

rhol(jk,i16m03) = alunsm(jk,i16m03)

rhor(jk,i16m03) = alunsm(jk,i16m02)

almon(jk) = 3. * rho(jk,i16m03)  - 2. * rhor(jk,i16m03)

armon(jk) = 3. * rho(jk,i16m03)  - 2. * rhol(jk,i16m03)

if (((rho(jk,i16m03) - rhol(jk,i16m03))

&   * (rho(jk,i16m03) - rhor(jk,i16m03))) .ge. 0.)  then

rhol(jk,i16m03) = rho(jk,i16m03)

rhor(jk,i16m03) = rho(jk,i16m03)

almon(jk) = rho(jk,i16m03)

armon(jk) = rho(jk,i16m03)

endif

if (((rhor(jk,i16m03) - rhol(jk,i16m03))

&   * (almon(jk) - rhol(jk,i16m03))) .gt. 0.)

&      rhol(jk,i16m03) = almon(jk)

if (((rhor(jk,i16m03) - rhol(jk,i16m03))

&   * (armon(jk) - rhor(jk,i16m03))) .lt. 0.)

&      rhor(jk,i16m03) = armon(jk)

drho(jk,i16m03) = rhor(jk,i16m03) - rhol(jk,i16m03)

rho6(jk,i16m03) = 6. * (rho(jk,i16m03)

&             - .5 * (rhol(jk,i16m03) + rhor(jk,i16m03)))

The Fortran-I 
intermediate form 
translation of the 
Fortran-W loop is 
unrolled 4 times 
and placed in a 
pipelined position 
in a single routine 
into which all 
subroutines have 
been inlined.  The 
outer array indices 
are barrel shifted 
on each trip 
through the 
pipeline, so that 
precious space in 
the on-chip memory 
is optimally utilized.



!DEC$ VECTOR ALWAYS

c!DEC$ VECTOR ALIGNED

do jk = 1,nssq

rhol(jk,i16m03) = alunsm(jk,i16m03)

rhor(jk,i16m03) = alunsm(jk,i16m02)

almon(jk) = 3. * rho(jk,i16m03)  - 2. * rhor(jk,i16m03)

armon(jk) = 3. * rho(jk,i16m03)  - 2. * rhol(jk,i16m03)

if (((rho(jk,i16m03) - rhol(jk,i16m03))

&   * (rho(jk,i16m03) - rhor(jk,i16m03))) .ge. 0.)  then

rhol(jk,i16m03) = rho(jk,i16m03)

rhor(jk,i16m03) = rho(jk,i16m03)

almon(jk) = rho(jk,i16m03)

armon(jk) = rho(jk,i16m03)

endif

if (((rhor(jk,i16m03) - rhol(jk,i16m03))

&   * (almon(jk) - rhol(jk,i16m03))) .gt. 0.)

&      rhol(jk,i16m03) = almon(jk)

if (((rhor(jk,i16m03) - rhol(jk,i16m03))

&   * (armon(jk) - rhor(jk,i16m03))) .lt. 0.)

&      rhor(jk,i16m03) = armon(jk)

drho(jk,i16m03) = rhor(jk,i16m03) - rhol(jk,i16m03)

rho6(jk,i16m03) = 6. * (rho(jk,i16m03)

&             - .5 * (rhol(jk,i16m03) + rhor(jk,i16m03)))

In the Fortran-I 
expression, each 
line of code is a 16-
wide SIMD 
operation.  When 
fully transformed, 
the outer indices are 
compressed to the 
minimum size of 
circular buffer of 16-
element grid planes 
needed for each 
variable residing on 
chip.  The loops on 
the index  jk  also all 
go away to give a 
simple, but 
enormous stream of 
SIMD instructions.



ImplementationImplementation
� Built using ANTLR parser generator

• Currently, supports FORTRAN77 input

• Parser generates AST

• Transformations implemented in multiple passes

• Each pass modifies AST

• Symbol tables aid the process

� and StringTemplate template engine

• Generates high performance FORTRAN output

We have a whole another back-end tool chain to generate 

architecture specific ports.

• C with (SIMD) intrinsics for different architectures.

• Current ports include Cell, Altivec (Power7), SSE



ResultsResults
Reciprocals counted as 3 flops

Multifluid PPM

• Nehalem cluster

� 5.5 Gflop/s/core (23% of 32-bit peak)

• Cell (pure 32-bit)

� 4.5 Gflop/s/SPU on 1 Cell processor

� 3.4 Gflop/s/SPU on 1440 Cell processors

• Cell (Mixed 32-bit and 64-bit)

� 2.04 Gflop/s/SPU on 24 Cell processors in our lab's 

RR tri-blades

� 1.37 Gflop/s/SPU on 7168 Cell processors

PPM advection

� 5.64 Gflop/s/core on our Nehalem cluster

� 6.28 Gflop/s/core self-reported

� Working with Intel folks to boost it up to 50% of 32-bit 

peak



Future WorkFuture Work

Weather code

• Bob Wilhelmson’s tornado simulation team for IBM 

Blue Waters

• Not directionally split

• 3D cell update at every pass

Explore applicability to multi-physics AMR 

• Try briquette-by-briquette approach instead of cell-

by-cell AMR

• We then get the benefits of

• Efficient read, writes

• Aligned short vector operations



ConclusionsConclusions
Pipelining enables high computational intensity and 

execution speed (23% of 32-bit peak on Nehalem).

Granularity is dramatically reduced, because there is now 

very much more work in each episode in order to 

make it efficient.  Allows efficient scaling to over a 

million cores.

Code is readable, but you would never agree to write it this 

way, and even if you did, you could not maintain it in 

this form with a reasonable level of effort

Need automatic code translators to convert simple 

expression to high performance expression and 

platform specific code expression (C with SIMD 

intrinsics, CUDA)

Tools come with reasonable restrictions to insure 

reasonable tool development efforts.
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